

### NMR: chemical and Knight shifts



#### Peter Blaha

Institute of Materials Chemistry TU Wien





## **NMR shielding**





Shielding of applied B-field leads to material dependent changes in transition energy





































#### for insulator:







chemical shift:  $\delta(ppm) = (\sigma_{ref} - \sigma) \times 10^6$ 







 The induced magnetic field *B<sub>orb</sub>* is derived from induced current *j* using the Biot-Savart law

$$B_{orb}(r) = \frac{1}{c} \int j(r') \times \frac{r - r'}{|r - r'|^3} d^3r'$$

• Current *j*(*r*) comes from DFT:

$$j(r') = \sum_{o} \langle \Psi_o | J(r') | \Psi_o \rangle$$
wave function in presence of B current operator





#### Linear response theory

#### Wavefunction in first-order perturbation

$$|\Psi_o\rangle = |\Psi_o^{(0)}\rangle + |\Psi_o^{(1)}\rangle$$
 first of the o

first order perturbation of the occupied states

$$\begin{split} &|\Psi_o^{(1)}\rangle = \sum_e |\Psi_e^{(0)}\rangle \frac{\langle \Psi_e^{(0)} | H^{(1)} | \Psi_o^{(0)}\rangle}{\epsilon_{\rm o} - \epsilon_e} \end{split}$$

 $p \rightarrow p + A(r')$  where  $A(r) = \frac{1}{2}B \times (r - d)$  (symmetric gauge)

$$H^{(1)} = \frac{1}{2c} \boldsymbol{L} \cdot \boldsymbol{B} = \frac{1}{2c} \boldsymbol{r} \times \boldsymbol{p}.\boldsymbol{B}$$

ill defined for extended systems





$$\mathbf{r} \cdot \hat{\mathbf{u}}_i = \lim_{q \to 0} \frac{1}{2q} \left( e^{iq\hat{\mathbf{u}}_i \cdot \mathbf{r}} - e^{-iq\hat{\mathbf{u}}_i \cdot \mathbf{r}} \right)$$

#### *H*<sup>(1)</sup> couples *k* and *k*±*q* states

 Eigenfunctions have to be computed on k-meshes shifted by ±*q* for small q

# APW description of unoccupied states:



 APW basis is perfect only for states with eigen energy close to linearization energy

 to remedy this we include extended set of local orbitals (NMR LO)



- NMR LO has has node at the sphere boundary
- Number of nodes increase by one in subsequent LO





 APW does not include directly radial derivative of u(r) which results in slow convergence with respect to number of NMR LO
 Adding r\*du/dr radial functions to the basis helps

$$\xi_{l,k}(r,\tilde{\epsilon}) = \begin{cases} r\frac{d}{dr}u_{l+1}(r,\tilde{\epsilon}) + (l+2)u_{l+1}(r,\tilde{\epsilon}), & k = 1\\ r\frac{d}{dr}u_{l-1}(r,\tilde{\epsilon}) - (l-1)u_{l-1}(r,\tilde{\epsilon}), & k = 2 \end{cases}$$

$$\tilde{u}_{l,k}(r) = \xi_{l,k}(r,\tilde{\epsilon}) - \sum_{i} b_{l,k,i} u_{l,i}(r).$$

$$|\phi_{lm,k}\rangle = \tilde{u}_{l,k}(r)Y_{lm}$$

$$\mathcal{G}(\epsilon_i) = \sum_e \frac{|\Psi_e^{(0)}\rangle \langle \Psi_e^{(0)}|}{\epsilon_i - \epsilon_e} + \sum_k \frac{|\phi_k\rangle \langle \phi_k|}{\langle \phi_k| (\epsilon_i - H) |\phi_k\rangle}$$





 Core states are covered by a separate eigenvalue problem, contribution is purely diamagnetic:

$$\mathbf{j}_{ind}(\mathbf{r}') = -\frac{1}{2c}\rho_{core}(\mathbf{r}')\mathbf{B}\times\mathbf{r}'$$

 Separate treatment of core and valence orbitals introduces some errors, corrected by:

$$\begin{aligned} |\Psi_{o}^{(1)}\rangle &= \sum_{e} |\Psi_{e}^{(0)}\rangle \frac{\langle \Psi_{e}^{(0)} | H^{(1)} | \Psi_{o}^{(0)} \rangle}{\epsilon_{o} - \epsilon_{e}} \\ &+ \sum_{core} |\Psi_{core}^{(0)}\rangle \frac{\langle \Psi_{core}^{(0)} | H^{(1)} | \Psi_{o}^{(0)} \rangle}{\epsilon_{o} - \epsilon_{core}} \leftarrow \text{Correction} \end{aligned}$$

PRB 89, 014402 (2014)





#### • NMR shielding $\sigma$ of the Ar atom:



R.Laskowski, P.B., PRB, 89 (2014), 014402



### **Test of method**





*j(r)* from perturbation theory does not agree with exact current (small *r*)
 we need basis set improvements for unoccupied states (high E-LOs + "Sternheimer" (DUC) basis functions) and core-corrections

# **Theory – Orbital fields in solids:**



In insulators the induced **magnetic field** ( $B_{ind}$ ) is obtained from the induced orbital current (*j*<sub>ind</sub>) using **Biot-Savart's** law:

$$\mathbf{B}_{ind}(\mathbf{r}) = \frac{1}{c} \int d^3 \mathbf{r}' \, \mathbf{j}(\mathbf{r}') \times \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3}$$

in DFT the **current density** *j*(*r*) can be obtained from :

 $\mathbf{j}_{\text{ind}}(\mathbf{r}') = \sum_{\sigma} \left[ \left\langle \Psi_o^{(1)} \middle| \mathbf{J}^{(0)}(\mathbf{r}') \middle| \Psi_o^{(0)} \right\rangle + \left\langle \Psi_o^{(0)} \middle| \mathbf{J}^{(0)}(\mathbf{r}') \middle| \Psi_o^{(1)} \right\rangle \text{ paramagnetic} \right]$ 

+  $\langle \Psi_o^{(0)} | \mathbf{J}^{(1)}(\mathbf{r}') | \Psi_o^{(0)} \rangle$ ], diamagnetic contributions

**perturbed w.f.**  $\Psi^{(1)}$  is obtained from perturbation theory

reens function approach

**H**<sup>(1)</sup> is the **external magnetic field** in symmetric gauge

$$H^{(1)} = \frac{1}{2c}\mathbf{r} \times \mathbf{p} \cdot \mathbf{B}$$

the magnetic field breaks periodic boundary conditions

 $\rightarrow$  the *r* operator is ill defined

pioneered by F.Mauri et al. "GIPAW" method

$$\mathbf{r} \cdot \hat{\mathbf{u}}_i = \lim_{q \to 0} \frac{1}{2q} (e^{iq\hat{\mathbf{u}}_i \cdot \mathbf{r}} - e^{-iq\hat{\mathbf{u}}_i \cdot \mathbf{r}})$$





## **Induced current in LAPW**



### Induced current field for BaO (fcc) , **B**<sub>ext</sub> in (001)



$$\mathbf{j}_{ind}(\mathbf{r}) = \begin{cases} \sum_{\mathbf{G}} \mathbf{j}_{\mathbf{G}} e^{i\mathbf{G}\cdot\mathbf{r}}, & \mathbf{r} \in I\\ \sum_{l,m} \mathbf{j}_{l,m}^{\alpha}(r) Y_{l,m}(\hat{r}), & \mathbf{r} \in S_{\alpha} \end{cases}$$







### bulk oxides or fluorides (O and F-NMR)

• VASP agrees very well with WIEN2k when optimized potentials are used





# Chemical shift of <sup>33</sup>S







### position/occupation of Me-d states determines CS









- Master script: x\_nmr [options]
- 1) run SCF calculation

2) prepare case.in1\_nmr (add NMR LO): x\_nmr -mode in1
case.in1\_nmr: (no HDLOs in case.in1 !!)

- WFFIL EF=.533144859350 (WFFIL, WFPRI, ENFIL, SUPWF)
- 7.00 10 4 (R-MT\*K-MAX; MAX L IN WF, V-NMT
- 0.30 19 0 (GLOBAL E-PARAMETER WITH n ....
- 0 -0.58576 0.002 CONT 1
- 0 4.80000 0.000 CONT 1
- 0 36.60000 0.000 CONT 1
- 0 66.66000 0.000 CONT 1
- 0 104.26000 0.000 CONT 1
- 0 149.26000 0.000 CONT 1
- 0 201.50000 0.000 CONT 1







#### 3) run x\_nmr: does the following steps for you:

- 1) computes eigenvectors using shifted and non-shifted meshes, the results are stored in: ./nmr\_q0, ./nmr\_mqx, ./nmr\_pqx, ./nmr\_mqy, ./nmr\_pqy, ./nmr\_mqz, ./nmr\_pqz (x\_nmr -mode lapw1)
- 2) computes weights for each k-mesh, (x\_nmr -mode lapw2)
- 3) computes core wave-functions (x\_nmr -mode lcore)
- 4) computes induced current (x\_nmr -mode current)
- 5) integrates the current ((x\_nmr -mode integ)

#### produces: case.output\_integ

- :NMRTOT001 ATOM: Ba1 1 NMR(total/ppm) Sigma-ISO = 5384.00 Sigma\_xx = 5474.82 Sigma\_yy = 5385.93 Sigma\_zz = 5291.24
- :NMRASY001 ATOM: Ba1 1 NMR(total/ppm) ANISO (delta-sigma) = -139.13 ASYM (eta) = 0.958 SPAN = 183.57 SKEW =-0.032

• ...

- x\_nmr -h prints help
- x\_nmr –p runs in parallel





band wise analysis

x\_nmr -emin e1 -emax e2

 character analysis (s,p,d) of the wave functions of occupied and empty states

 $\mathbf{x}_{nmr} - \text{filt}_{curr} o \ atom I \qquad \mathbf{x}_{nmr} - \text{filt}_{curr} \text{fop} \ atom I$  $\mathbf{j}_{ind}(\mathbf{r}') = \frac{1}{c} \sum_{o} Re \left[ \langle \Psi_{o}^{(0)} | \mathbf{J}^{0}(\mathbf{r}') | \tilde{\Psi}_{o}^{(1)} \rangle \right]$ 

$$\begin{split} \mathbf{x}_{nmr} - \text{filt}_{cxyz}_{q} \ atom I & \mathbf{x}_{nmr} - \text{filt}_{cxyz}_{o} \ atom I \\ |\tilde{\Psi}_{o}^{(1)}\rangle = \sum_{e} |\Psi_{e}^{(0)}\rangle \frac{\langle \Psi_{e}^{(0)}| \left[ (\mathbf{r} - \mathbf{r}') \times \mathbf{p} \cdot \mathbf{B} \right] |\Psi_{o}^{(0)}\rangle}{\epsilon_{\circ} - \epsilon_{e}} \\ \text{large } \delta \mathbf{E} \rightarrow \text{small effect} \end{split}$$



## Origin of shielding in fluorides







NMR shielding at fluorine nucleus in alkali fluoride series for different couplings

+320 ppm from F-1s,2s (constant)

#### PRB 85, 245117 (2012)

Schematic diagram representing major couplings contributing to NMR shielding





room T: tetragonal phasehigh-T cubic phase:

10<sup>-4</sup> S/cm, 2 orders better cond.
 than tetragonal phase

 cubic LLZO by Al<sup>3+</sup>-doping
 A<sup>β+</sup> replaces Li<sup>+</sup>, but crystallographic site is unknown

<sup>27</sup>Al NMR: 2 signals, 14 ppm apart 4-fold coordinations ??

 neutron diffraction: Al in 6-fold coord.

Figure 1. Crystal structure of cubic LLZO. The yellow dodecahedrally coordinate  $La^{3+}$  (at the Wyckoff position 24*c*) and orange octahedrally coordinate  $Zr^{4+}$  (16*a*). The blue spheres correspond to tetrahedrally coordinated (24*d*) Li<sup>+</sup>, green spheres to octahedrally coordinated (48*g*) Li<sup>+</sup>, and red ones to distorted 4-fold coordinated (96*h*) Li<sup>+</sup>.

D. Rettenwander et al., Chem.Mat. 26, 2617 (2014)

 $Li_7La_3Zr_2O_{12}$ 











1.2 Å

**0.9** Å

4-fold 24d lowest energy

#### followed closely by

- dist. 4-fold 96h
- 6-fold **48g**



### NMR chemical shifts





shift values,  $\Delta\delta$ , (13 to 18 ppm) in literature. The reference point refers to  $\Delta \delta = 0$  given by the calculations.





#### In insulators the orbital current determines the shielding

•  $\sigma$  it is usually small (ppm) and often diamagnetic ( $B_{ind} = -\sigma B_{ext}$ )

### In metals there is in addition a spin current

- the shift can be much larger (%) and often the spin current dominates (paramagnet)
- the external magnetic field leads to an exchange splitting of the spin-up and dn bands and an effective spin magnetization density. This results in a hyperfine field at the nucleus (Fermi contact term) and a dipolar contribution (usually small):

$$B_{\rm hf} = \frac{8\pi}{3} \mathbf{m}_{\rm av} + \int \frac{S(r)}{r^3} [3(\mathbf{m}(r)\hat{r})\hat{r} - \mathbf{m}(r)]$$

*m*<sub>av</sub>: spin density at the nucleus (averaged over r<sub>Thomson</sub>)

# exchange splitting





→ valence (4s) hyperfine field due to direct polarization
→ core (1s,..) field due to response to induced 3d moments

even "big" magnetic fields correspond to tiny energies

■ 100 T ~ 1 mRy

numerical difficulty:

- enormous k-meshes (1.000.000 k-points in Al)
- temperature smearing (2 mRy = 300 K)



#### I E N 2k

### comparison with experiment





very good agreement given the rather old experimental data and problems with the "reference".



experiment measures vs. a reference compound (sometimes liquids)  $\delta_{th} = \sigma_{ref} - (\sigma_o + \sigma_s)$ 

|                                       | σ     | $\sigma_{o(ref)}$ | σ      | δ <sub>th</sub> | δενη          | $\delta_{th} = \delta_{exp}$ |         |
|---------------------------------------|-------|-------------------|--------|-----------------|---------------|------------------------------|---------|
| Li /Li <sub>2</sub> O                 | 81    | 96                | -264   | 279             | 260           | 19                           |         |
| Na / NaBr                             | 518   | 551               | -1021  | 1054            | 1070          | -16                          |         |
| K / KBr                               | 1126  | 1153              | -2560  | 2589            | Often it      | is argued t                  | hat the |
| Rb / RbCl                             | 3031  | 3028              | -6826  | 6822            | orbital       | shifts of <b>m</b>           | etal    |
| Cs / CsCl                             | 5473  | 5380              | -16177 | 16083           | and refe      | erence car                   | icel    |
| Mg / MgCl <sub>2</sub>                | 505   | 552               | -1078  | 1124            | and only      | the Knight                   | (spin)  |
| Ba / BaCl <sub>2</sub>                | 5730  | 5661              | -4160  | 4092            | shift remains |                              |         |
| AI / AIPO <sub>4</sub>                | 519   | 512               | -1591  | 1584            | Shine Ferr    |                              |         |
| $In / In_2(SO_4)_3$                   | 2807  | 3676              | -8012  | 8881            | This is tr    | rue only for                 | sp-     |
| V / NaVO <sub>3</sub>                 | -5988 | -1453             | 488    | 4046            | elemen        | ts                           | SP      |
| Cr / Na <sub>2</sub> CrO <sub>4</sub> | -9847 | -2567             | 461    | 6818            | cicilien      |                              |         |
| Mo / K <sub>2</sub> MoO <sub>4</sub>  | -5795 | -825              | -27    | 4997            | υτυυ          | -TTOO                        |         |
| Cu / CuBr                             | -330  | 492               | -1568  | 2390            | 2380          | 10                           |         |
| Ag / AgNO <sub>3</sub>                | 2219  | 3772              | -3670  | 5223            | 5210          | 13                           | 1%      |



experiment measures vs. a reference compound (sometimes liquids)

 $\delta_{\rm th} = \sigma_{\rm ref} - \sigma_{\rm o} - \sigma_{\rm s}$ 

|                                       | $\sigma_{o}$ | $\sigma_{o(ref)}$ | $\sigma_{s}$ | $\delta_{th}$ | $\delta_{exp}$          | $\delta_{\sf th}$ - $\delta_{\sf exp}$ |         |
|---------------------------------------|--------------|-------------------|--------------|---------------|-------------------------|----------------------------------------|---------|
| Li /Li <sub>2</sub> O                 | 81           | 96                | -264         | 279           | 260                     | 19                                     |         |
| Na / NaBr                             | 518          | 551               | -1021        | 1054          | 1070                    | -16                                    |         |
| K / KBr                               | 1126         | 1153              | -2560        | 2589          | Why is t                | he Kniaht (                            | (snin)  |
| Rb / RbCl                             | 3031         | 3028              | -6826        | 6822          | shift not always strong |                                        | onaly   |
| Cs / CsCl                             | 5473         | 5380              | -16177       | 16083         | narama                  | anetic                                 | ongry   |
| Mg / MgCl <sub>2</sub>                | 505          | 552               | -1078        | 1124          | (negative               | P) 777                                 |         |
| Ba / BaCl <sub>2</sub>                | 5730         | 5661              | -4160        | 4092          | (negativ                | c)                                     |         |
| AI / AIPO <sub>4</sub>                | 519          | 512               | -1591        | 1584          | It should               | l he directl                           | v       |
| $In / In_2(SO_4)_3$                   | 2807         | 3676              | -8012        | 8881          | proport                 | <b>ional</b> to t                      | י<br>ופ |
| V / NaVO <sub>3</sub>                 | -5988        | -1453             | 488          | 4046          | valence                 | -s DOS at                              | - F_    |
| Cr / Na <sub>2</sub> CrO <sub>4</sub> | -9847        | -2567             | 461          | 6818          | Valence                 |                                        | ╴┗╞╺    |
| $Mo / K_2 MoO_4$                      | -5795        | -825              | -27          | 4997          | υτυυ                    | -1102                                  |         |
| Cu / CuBr                             | -330         | 492               | -1568        | 2390          | 2380                    | 10                                     |         |
| Ag / AgNO <sub>3</sub>                | 2219         | 3772              | -3670        | 5223          | 5210                    | 13                                     |         |





- The induced magnetic moment of "d"-character polarizes the core states (usually in opposite way).
- This core shift can be even larger than the valence shift and fully compensate it.

|    | $m_{\rm s} (10^{-3} \mu_{\rm B})$ |     |      | $\sigma_{\rm s}~({\rm ppm})$ |       |  |
|----|-----------------------------------|-----|------|------------------------------|-------|--|
|    | s                                 | Р   | d    | valence                      | core  |  |
| Li | 0.4                               | 1.1 | 0.0  | 264                          | 0     |  |
| Na | 0.6                               | 0.5 | 0.1  | 1033                         | -12   |  |
| K  | 0.4                               | 0.2 | 0.0  | 2556                         | 4     |  |
| Rb | 0.4                               | 0.2 | 0.2  | 6795                         | 31    |  |
| Cs | 0.5                               | 0.2 | 0.7  | 16084                        | 93    |  |
| Mg | 0.5                               | 0.7 | 0.3  | 1097                         | -16   |  |
| Ba | 0.0                               | 0.3 | 2.1  | 4078                         | 82    |  |
| Al | 0.3                               | 0.6 | 0.2  | 1584                         | 7     |  |
| In | 0.4                               | 0.9 | 0.0  | 7956                         | 56    |  |
| v  | 0.4                               | 1.9 | 25.1 | 3439                         | -3927 |  |
| Cr | 0.0                               | 0.2 | 5.3  | 613                          | -1074 |  |
| Mo | 0.0                               | 0.2 | 3.1  | 150                          | -123  |  |
| Cu | 0.1                               | 0.2 | 0.7  | 1677                         | -109  |  |
| Ag | 0.2                               | 0.7 | 0.3  | 3708                         | -39   |  |





- 1) Spin-polarized calculation with zero moment
  - instgen -nm # generate nonmagnetic atomic configurations
  - init\_lapw -sp -fermit 0.004 -numk XXX ... # initialization
  - runsp\_c\_lapw -c 0.00001 [-p] ... # run scf with zero moment
- 2) Copy input file specifying 100T field
  - cp \$WIENROOT/SRC templates/case.vorbup(dn)\_100T case.vorbup(dn)
- 3) SCF calculation with external magnetic field
  - runsp\_lapw -orbc -cc 0.000001 [-p] ... # scf calculation
  - grepline :HFF0XX case.scf # get the hyperfine field in kGauss







#### Ternary and quaternary compounds with TT`=Ni,Cu,Ag,Au,Pd





Overall good correlation with experiment but a few exceptions:

- Al and Sc-NMR in ScNiAuAl
- Sc-NMR in ScAg<sub>2</sub>Al



Benndorf et al., Z.anorg.allgem.Chemie 641, 168 (2015)





exp. lattice parameter disagrees with Vegards law and theoretical a<sub>0</sub>

300 ppm shift for Al !!! correcting most of the differences





# $\sigma_{\text{orb}} \text{ and } \sigma_{\text{spin}} \text{ in ScTT`Al}$





#### A



#### Sc

### huge **paramagnetic** variation small **dia/paramagn**. variation determined by σ<sub>orb</sub> 3d valence e<sup>-</sup>



### Induced density and potential in ScNiAuAl





#### induced spin-density (100T):

Al: small and spherical symmetric Sc: large 3d-"t2g" like spin-density large induced Sc magn.moment



#### induced scf difference potential V<sub>up</sub> –V<sub>dn</sub>:

- 100T = constant 8.5 10<sup>-4</sup> Ry
- $\Delta V$  not constant at all
- radial differences due to contraction/ expansion of spin-up/dn wf.
- non-spherical around Sc



### **Decomposition of Knight shift in ScTT'Al**







# Ga-NMR in intermetallic gallides











#### routine NMR calculations for Knight and Chemical shifts in solids are now possible

- huge k-meshes and Fermi broadening necessary, but manageable
- orbital shift: paramagnetic part when d-e<sup>-</sup> are present/available above E<sub>F</sub> either on the NMR-atom or its neighbor
- spin-contact term dominates in metals, but orbital part not negligible and for d elements sometimes more important than spin-part
- core-polarization due to induced 3d (4d) moments can dominate (cancel) the direct 4s (5s) valence contribution
- *important spin-dipolar term when charge asymmetry at*  $E_F$  *exists*
- "Slope"-problem = DFT-problem ?