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NMR shielding

Shielding of applied B-field leads to material dependent
changes in transition energy

ms=-1/2

ms=+1/2

Zeeman-effect



Btot = Borb + Bfermi + Bdip + Blat

Sources of magnetic fields at the nuclear site
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= neighbors as bar magnets
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Borb is the only major component
for molecules and insulators 
(chemical shift)Bfermi dominates the Knight shift

in metals
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heQHQ /
quadrupole interaction



sources of magnetic shielding

 for insulator: 



NMR shielding, chemical shift:

s(R) is the shielding tensor at the nucleus  R

chemical shift:  d (ppm) = (sref – s) x 106



orbital shielding

wave function in presence of B
current operator



NMR theory

All empty states !

first order perturbation of
the occupied states



r operator in periodic system:



APW description of unoccupied states:



Sternheimer correction (DUC)



Core corrections



“absolutely” converged results:

NMR shielding s of the Ar atom:

diamagnetic current 
for closed shell spherical 
atom from density r :

high-E LOs: converge
very slowly
CC: constant shift
DUC: rapid convergence

R.Laskowski, P.B., PRB, 89 (2014), 014402



Test of method

 Induced current in free Ar atom (where j(r) can be 
calculated directly  (“exactly”) from                         )

 j(r) from perturbation theory does not agree with exact current (small r)

 we need basis set improvements for unoccupied states (high E-LOs + 
“Sternheimer” (DUC) basis functions) and core-corrections



Theory – Orbital fields in solids:

In insulators the induced magnetic field (Bind) is obtained from the 
induced orbital current (jind) using Biot-Savart’s law:

in DFT the current density j(r) can be obtained from :

perturbed w.f.  Y (1) is obtained from perturbation theory

H(1) is the external magnetic field in symmetric gauge

the magnetic field breaks periodic boundary conditions 

 the r operator is ill defined

paramagnetic

diamagnetic contributions

Greens function approach

pioneered by F.Mauri et al.
„GIPAW“ method



Induced current in LAPW

Induced current field for BaO (fcc) , Bext in (001)



 bulk oxides or fluorides (O and F-NMR)

 VASP agrees very well with WIEN2k when optimized potentials are used

Comparison WIEN2k-VASP-CASTEP

slope-problem 
= DFT-problem



Chemical shift of  33S

 Ionic sulfides:   s decreases with Z  

 TM sulfides:       s increases with Z

 why has Na2S and PbS almost the same shielding 
?



position/occupation of Me-d states determines CS

 empty d-states near the

CBM give large negative

(paramagnetic) shift

S-3s  3p



How to run the code

Master script: x_nmr [options]      

 1) run SCF calculation

 2) prepare case.in1_nmr (add NMR LO): x_nmr -mode in1

 case.in1_nmr: (no HDLOs in case.in1 !!)
 WFFIL  EF=.533144859350   (WFFIL, WFPRI, ENFIL, SUPWF)

 7.00       10    4 (R-MT*K-MAX; MAX L IN WF, V-NMT

 0.30   19  0     (GLOBAL E-PARAMETER WITH n ….

 0  -0.58576    0.002 CONT 1

 0   4.80000    0.000 CONT 1

 0  36.60000    0.000 CONT 1

 0  66.66000    0.000 CONT 1

 0 104.26000    0.000 CONT 1

 0 149.26000    0.000 CONT 1

 0 201.50000    0.000 CONT 1

 …

NMR LO's



how to run the code:

 3) run x_nmr:  does the following steps for you:
 1) computes eigenvectors using shifted and non-shifted meshes, the results are stored in: 

./nmr_q0, ./nmr_mqx, ./nmr_pqx, ./nmr_mqy, ./nmr_pqy, ./nmr_mqz, ./nmr_pqz

(x_nmr -mode lapw1)

 2) computes weights for each k-mesh, (x_nmr -mode lapw2)

 3) computes core wave-functions (x_nmr -mode lcore)

 4) computes induced current (x_nmr -mode current)

 5) integrates the current ((x_nmr -mode integ)

 produces: case.output_integ

 :NMRTOT001  ATOM:      Ba1   1  NMR(total/ppm) Sigma-ISO =   5384.00     Sigma_xx =   5474.82   
Sigma_yy =   5385.93   Sigma_zz =   5291.24

 :NMRASY001  ATOM:      Ba1   1  NMR(total/ppm) ANISO (delta-sigma) =   -139.13     ASYM (eta) = 
0.958     SPAN =    183.57     SKEW =-0.032

 …

 x_nmr -h   prints help

 x_nmr –p   runs in parallel



where does it come from ?

large dE  small effect



Origin of shielding in fluorides

+320 ppm from F-1s,2s (constant)



A real application: LLZO, a fast Li-ion conductor

 room T: tetragonal phase 

 high-T cubic phase: 

 10-4 S/cm, 2 orders better cond.

than tetragonal phase

 cubic LLZO by Al3+-doping 

 Al3+ replaces Li+, but 

crystallographic site is unknown


27Al NMR: 2 signals, 14 ppm apart

4-fold coordinations ??

 neutron diffraction: 

Al in 6-fold coord.

D. Rettenwander et al., Chem.Mat. 26, 2617 (2014)



total energies as function of Al3+ position

 4-fold 24d lowest energy

 followed closely by

 dist. 4-fold 96h

 6-fold 48g



NMR chemical shifts

24d
96h48h

~200 ppm

• only 2 NMR signals 
found so far.

• agrees well with 4-fold
24d and 96h pos.

• 6-fold 48h pos. has a
very different shift
(200 ppm) 



NMR in metals: Knight shifts

 In insulators the orbital current determines the shielding

 s it is usually small (ppm) and often diamagnetic   (Bind = -s Bext)

 In metals there is in addition a spin current 

 the shift can be much larger (%) and often the spin current dominates 
(paramagnet)

 the external magnetic field leads to an exchange splitting of the spin-up 
and dn bands and an effective spin magnetization density. This results 
in a hyperfine field  at the nucleus (Fermi contact term) and a dipolar 
contribution (usually small):



exchange splitting

 even “big” magnetic fields correspond to tiny energies

 100 T ~ 1 mRy

 numerical difficulty:  

 enormous k-meshes (1.000.000 k-points in Al)

 temperature smearing (2 mRy = 300 K)

EF



 very good agreement given the rather old experimental data 
and problems with the “reference”.

comparison with experiment

dth = sref - so - ss



NMR shifts and shielding for metals

so so(ref) ss dth dexp dth-dexp

Li /Li2O 81 96 -264 279 260 19
Na / NaBr 518 551 -1021 1054 1070 -16
K / KBr 1126 1153 -2560 2589 2500 89
Rb / RbCl 3031 3028 -6826 6822 6460 362
Cs / CsCl 5473 5380   -16177  16083   15700 383
Mg / MgCl2 505 552 -1078 1124 1120 4
Ba / BaCl2 5730 5661 -4160 4092 4030 62
Al / AlPO4 519 512 -1591 1584 1595 -11
In / In2(SO4)3 2807 3676 -8012 8881 8300 581
V / NaVO3 -5988   -1453 488 4046 5800    -1754
Cr / Na2CrO4 -9847    -2567 461 6818 6900 -82
Mo / K2MoO4 -5795 -825 -27 4997 6100    -1103
Cu / CuBr -330 492 -1568 2390 2380 10
Ag / AgNO3 2219 3772 -3670 5223 5210 13

experiment measures vs. a reference compound (sometimes liquids)

dth = sref – (so + ss)

Often it is argued that the 
orbital shifts of metal
and reference cancel
and only the Knight (spin) 
shift remains.

This is true only for sp-
elements.



NMR shifts and shielding for metals

so so(ref) ss dth dexp dth-dexp

Li /Li2O 81 96 -264 279 260 19
Na / NaBr 518 551 -1021 1054 1070 -16
K / KBr 1126 1153 -2560 2589 2500 89
Rb / RbCl 3031 3028 -6826 6822 6460 362
Cs / CsCl 5473 5380   -16177  16083   15700 383
Mg / MgCl2 505 552 -1078 1124 1120 4
Ba / BaCl2 5730 5661 -4160 4092 4030 62
Al / AlPO4 519 512 -1591 1584 1595 -11
In / In2(SO4)3 2807 3676 -8012 8881 8300 581
V / NaVO3 -5988   -1453 488 4046 5800    -1754
Cr / Na2CrO4 -9847    -2567 461 6818 6900 -82
Mo / K2MoO4 -5795 -825 -27 4997 6100    -1103
Cu / CuBr -330 492 -1568 2390 2380 10
Ag / AgNO3 2219 3772 -3670 5223 5210 13

experiment measures vs. a reference compound (sometimes liquids)

dth = sref - so - ss

Why is the Knight (spin) 
shift not always strongly 
paramagnetic
(negative) ???

It should be directly
proportional to the
valence-s DOS at EF .



 The induced magnetic moment of “d”-character polarizes the core states 
(usually in opposite way).

 This core shift can be even larger than the valence shift and fully 
compensate  it.

Contributions to spin HFF:



How is it done ?

 1) Spin-polarized calculation with zero moment

 instgen -nm # generate nonmagnetic atomic configurations

 init_lapw -sp -fermit 0.004 -numk XXX ... # initialization

 runsp_c_lapw -c 0.00001 [-p] ... # run scf with zero moment

 2) Copy input file specifying 100T field

 cp $WIENROOT/SRC templates/case.vorbup(dn)_100T case.vorbup(dn)

 3) SCF calculation with external magnetic field

 runsp_lapw -orbc -cc 0.000001 [-p] ... # scf calculation

 grepline :HFF0XX case.scf # get the hyperfine field in kGauss



 Ternary and quaternary compounds with TT‘=Ni,Cu,Ag,Au,Pd

Al and Sc NMR in ScTT‘Al Heusler phases

Overall good correlation with experiment
but a few exceptions:
• Al and Sc-NMR in ScNiAuAl
• Sc-NMR in ScAg2Al

Benndorf et al., Z.anorg.allgem.Chemie 641, 168 (2015)



 exp. lattice parameter disagrees with Vegards law and theoretical a0

 300 ppm shift for Al !!! correcting most of the differences

Analysis of Al-shift in ScNiAuAl



sorb and sspin in ScTT‘Al

Al                                              Sc

sorb:  small diamagnetic variation            huge paramagnetic variation

sspin: large paramagnetic variation          small dia/paramagn. variation

stot:  determined by  sspin determined by   sorb

only 3sp valence e- 3d valence e-



Induced density and potential in ScNiAuAl

induced spin-density (100T):

Al: small and spherical symmetric
Sc: large 3d-“t2g“ like spin-density

large induced Sc magn.moment

induced scf difference potential 
Vup –Vdn:

• 100T = constant 8.5 10-4 Ry
• DV not constant at all
• radial differences due to contraction/ 

expansion of spin-up/dn wf.
• non-spherical around Sc



Decomposition of Knight shift in ScTT‘Al

sspin
total = sspin

para + sspin
core-SCF + sspin

val-SCF

=
+

+

total para

core-SCF

core-SCF

val-SCF

core-polarization

onsite + transfered HFF

(S
c)



Ga-NMR in intermetallic gallides

CaGa2

SrGa2

BaGa2

Na/Sr/BaGa4 CaGa4

slope ???

R.Laskowski et al., J.Phys.Chem. C 121, 753 (2017)



Summary:

routine NMR calculations for Knight and Chemical shifts 
in solids are now possible

 huge k-meshes  and Fermi broadening necessary, but manageable

 orbital shift: paramagnetic part when d-e- are present/available 
above EF, either on the NMR-atom or its neighbor

 spin-contact term dominates in metals, but orbital part not negligible and 
for d elements sometimes more important than spin-part

 core-polarization due to induced 3d (4d) moments can dominate  
(cancel) the direct 4s (5s) valence contribution

 important spin-dipolar term when charge asymmetry at EF exists

 “Slope”-problem = DFT-problem ?


